Determining chemical concentration with standard addition: An application of linear regression in JMP – A Guest Blog Post for the JMP Blog

I am very excited to announce that I have been invited by JMP to be a guest blogger for its official blog!  My thanks to Arati Mejdal, Global Social Media Manager for the JMP Division of SAS, for welcoming me into the JMP blogging community with so much support and encouragement, and I am pleased to publish my first post on the JMP Blog!  Mark Bailey and Byron Wingerd from JMP provided some valuable feedback to this blog post, and I am fortunate to get the chance to work with and learn from them!

Following the tradition of The Chemical Statistician, this post combines my passions for statistics and chemistry by illustrating how simple linear regression can be used for the method of standard addition in analytical chemistry.  In particular, I highlight the useful capability of the “Inverse Prediction” function under “Fit Model” platform in JMP to estimate the predictor given an observed response value (i.e. estimate the value of x_i given y_i).  Check it out!

JMP blog post - standard addition

Discovering Argon with the 2-Sample t-Test

I learned about Lord Rayleigh’s discovery of argon in my 2nd-year analytical chemistry class while reading “Quantitative Chemical Analysis” by Daniel Harris.  (William Ramsay was also responsible for this discovery.)  This is one of my favourite stories in chemistry; it illustrates how diligence in measurement can lead to an elegant and surprising discovery.  I find no evidence that Rayleigh and Ramsay used statistics to confirm their findings; their paper was published 13 years before Gosset published about the t-test.  Thus, I will use a 2-sample t-test in R to confirm their result.

Lord Rayleigh                                    William Ramsay

Photos of Lord Rayleigh and William Ramsay

Source: Wikimedia Commons

Read more of this post


Get every new post delivered to your Inbox.

Join 303 other followers