Exploratory Data Analysis: The 5-Number Summary – Two Different Methods in R


Continuing my recent series on exploratory data analysis (EDA), today’s post focuses on 5-number summaries, which were previously mentioned in the post on descriptive statistics in this series.  I will define and calculate the 5-number summary in 2 different ways that are commonly used in R.  (It turns out that different methods arise from the lack of universal agreement among statisticians on how to calculate quantiles.)  I will show that the fivenum() function uses a simpler and more interpretable method to calculate the 5-number summary than the summary() function.  This post expands on a recent comment that I made to correct an error in the post on box plots.

> y = seq(1, 11, by = 2)
> y
[1]  1  3  5  7  9 11
> fivenum(y)
[1]  1  3  6  9 11
> summary(y)
     Min.   1st Qu.   Median    Mean     3rd Qu.    Max. 
     1.0     3.5       6.0       6.0      8.5       11.0

Why do these 2 methods of calculating the 5–number summary in R give different results?  Read the rest of this post to find out the answer!

Previous posts in this series on EDA include

Read more of this post

Using the Golden Section Search Method to Minimize the Sum of Absolute Deviations


Recently, I introduced the golden search method – a special way to save computation time by modifying the bisection method with the golden ratio – and I illustrated how to minimize a cusped function with this script.  I also wrote an R function to implement this method and an R script to apply this method with an example.  Today, I will use apply this method to a statistical topic: minimizing the sum of absolute deviations with the median.

While reading Page 148 (Section 6.3) in Michael Trosset’s “An Introduction to Statistical Inference and Its Applications”, I learned 2 basic, simple, yet interesting theorems.

If X is a random variable with a population mean \mu and a population median q_2, then

a) \mu minimizes the function f(c) = E[(X - c)^2]

b) q_2 minimizes the function h(c) = E(|X - c|)

I won’t prove these theorems in this blog post (perhaps later), but I want to use the golden section search method to show a result similar to b):

c) The sample median, \tilde{m} , minimizes the function

g(c) = \sum_{i=1}^{n} |X_i - c|.

This is not surprising, of course, since

- |X - c| is just a function of the random variable X

- by the law of large numbers,

\lim_{n\to \infty}\sum_{i=1}^{n} |X_i - c| = E(|X - c|)

Thus, if the median minimizes E(|X - c|), then, intuitively, it minimizes \lim_{n\to \infty}\sum_{i=1}^{n} |X_i - c|.  Let’s show this with the golden section search method, and let’s explore any differences that may arise between odd-numbered and even-numbered data sets.

Read more of this post


Get every new post delivered to your Inbox.

Join 246 other followers