Physical Chemistry Lesson of the Day – Standard Heats of Reaction

The change in enthalpy of a chemical reaction indicates how much heat is absorbed or released by the system.  This is valuable information in chemistry, because the exchange in heat affects the reaction conditions and the surroundings, and that needs to be managed and taken into account – in theory, in the laboratory, in industry or in nature in general.

Chemists often want to compare the changes in enthalpy between different reactions.  Since changes in enthalpy depend on both temperature and pressure, we need to control for these 2 confounding variables by using a reference set of temperature and pressure.  This set of conditions is called the standard conditions, and it sets the standard temperature at 298 degrees Kelvin and the standard pressure at 1 bar.  (IUPAC changed the definition of standard pressure from 1 atmosphere to 1 bar in 1982.  The actual difference in pressure between these 2 definitions is very small.)

The standard enthalpy of reaction (or standard heat of reaction) is the change in enthalpy of a chemical reaction under standard conditions; the actual number of moles are specified by the coefficients of the balanced chemical equation.  (Since enthalpy is an extensive property, the same reaction under standard conditions could have different changes in enthalpy with different amounts of the reactants and products.  Thus, the number of moles of the reaction must be standardized somehow when defining the standard enthalpy of reaction.)  The standard enthalpy of reaction has the symbol ΔHº; the º symbol indicates the standard conditions.

Your thoughtful comments are much appreciated!

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: