Organic and Inorganic Chemistry Lesson of the Day – Optical Rotation (a.k.a. Optical Activity)

A substance consisting of a chiral compound can rotate linearly polarized light – this property is known as optical rotation (more commonly called optical activity).  The direction in which the light is rotated is one way to distinguish between a pair of enantiomers, as they rotate linearly polarized light in opposite directions.

Imagine if you are an enantiomer, and linearly polarized light approaches you.

  • If the light is rotated clockwise from your perspective, then you are a dextrorotary enantiomer.
  • Otherwise, if the light is rotated counterclockwise from your perspective, then you are a levorotary enantiomer.

In a previous Chemistry Lesson of the Day, I introduced the concept of diastereomers, and I used threose as an example.  Let’s use threose to illustrate some notation about optical activity.

D-threose.svg 2

(-)-Threose

  • Levorotary compounds are denoted by the prefix (-), followed by a hyphen, then followed by the name of the compound.  The above molecule is (-)-threose.
  • Dextrorotary compounds are denoted by the prefix (+), followed by a hyphen, then followed by the name of the compound.  The enantiomer of (-)-threose is (+)-threose.

A compound’s optical rotation is determined by a polarimeter.

I strongly discourage the use of the prefixes (d)- and (l-) to distinguish between enantiomers.  Use (+) and (-) instead.

Beware of the difference between designating enantiomers as (+) or (-) and designating stereogenic centres as either (R) or (S).

It is important to note that optical rotation is usually referred to as a bulk property.

Your thoughtful comments are much appreciated!

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: