Mathematical Statistics Lesson of the Day – Ancillary Statistics

The set-up for today’s post mirrors my earlier Statistics Lessons of the Day on sufficient statistics and complete statistics.

Suppose that you collected data

\mathbf{X} = X_1, X_2, ..., X_n

in order to estimate a parameter \theta.  Let f_\theta(x) be the probability density function (PDF) or probability mass function (PMF) for X_1, X_2, ..., X_n.

Let

a = A(\mathbf{X})

be a statistics based on \textbf{X}.

If the distribution of A(\textbf{X}) does NOT depend on \theta, then A(\textbf{X}) is called an ancillary statistic.

An ancillary statistic contains no information about \theta; its distribution is fixed and known without any relation to \theta.  Why, then, would we care about A(\textbf{X})  I will address this question in later Statistics Lessons of the Day, and I will connect ancillary statistics to sufficient statistics, minimally sufficient statistics and complete statistics.

One Response to Mathematical Statistics Lesson of the Day – Ancillary Statistics

  1. Pingback: Distilled News | Data Analytics & R

Your thoughtful comments are much appreciated!

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: