New Job at the Bank of Montreal in Toronto

I have accepted an offer from the Bank of Montreal to become a Manager of Operational Risk Analytics and Modelling at its corporate headquarter office in Toronto.  Thus, I have resigned from my job at the British Columbia Cancer Agency.  I will leave Vancouver at the end of December, 2015, and start my new job at the beginning of January, 2016.

I have learned some valuable skills and met some great people here in Vancouver over the past 2 years.  My R programming skills have improved a lot, especially in text processing.  My SAS programming skills have improved a lot, and I began a new section on my blog to SAS programming as a result of what I learned.  I volunteered and delivered presentations for the Vancouver SAS User Group (VanSUG) – once on statistical genetics, and another on sampling strategies in analytical chemistry, ANOVA, and PROC TRANSPOSE.  I have thoroughly enjoyed meeting some smart and helpful people at the Data Science, Machine Learning, and R Programming Meetups.

I lived in Toronto from 2011 to 2013 while pursuing my Master’s degree in statistics at the  University of Toronto and working as a statistician at Predicum.  I look forward to re-connecting with my colleagues there.

Advertisements

Potato Chips and ANOVA, Part 2: Using Analysis of Variance to Improve Sample Preparation in Analytical Chemistry

In this second article of a 2-part series on the official JMP blog, I use analysis of variance (ANOVA) to assess a sample-preparation scheme for quantifying sodium in potato chips.  I illustrate the use of the “Fit Y by X” platform in JMP to implement ANOVA, and I propose an alternative sample-preparation scheme to obtain a sample with a smaller variance.  This article is entitled “Potato Chips and ANOVA, Part 2: Using Analysis of Variance to Improve Sample Preparation in Analytical Chemistry“.

If you haven’t read my first blog post in this series on preparing the data in JMP and using the “Stack Columns” function to transpose data from wide format to long format, check it out!  I presented this topic at the last Vancouver SAS User Group (VanSUG) meeting on Wednesday, November 4, 2015.

My thanks to Arati Mejdal, Louis Valente, and Mark Bailey at JMP for their guidance in writing this 2-part series!  It is a pleasure to be a guest blogger for JMP!

 

potato-chips-and-analytical-chemistry-part-2

Potato Chips and ANOVA in Analytical Chemistry – Part 1: Formatting Data in JMP

I am very excited to write again for the official JMP blog as a guest blogger!  Today, the first article of a 2-part series has been published, and it is called “Potato Chips and ANOVA in Analytical Chemistry – Part 1: Formatting Data in JMP“.  This series of blog posts will talk about analysis of variance (ANOVA), sampling, and analytical chemistry, and it uses the quantification of sodium in potato chips as an example to illustrate these concepts.

The first part of this series discusses how to import the data into the JMP and prepare them for ANOVA.  Specifically, it illustrates how the “Stack Columns” function is used to transpose the data from wide format to long format.

I will present this at the Vancouver SAS User Group (VanSUG) meeting later today.

Stay tuned for “Part 2: Using Analysis of Variance to Improve Sample Preparation in Analytical Chemistry“!

 

potato-chips-and-analytical-chemistry-part-1

Vancouver SAS User Group Meeting – Wednesday, November 4, 2015

I am excited to present at the next Vancouver SAS User Group (VanSUG) meeting on Wednesday, November 4, 2015.  I will illustrate data transposition and ANOVA in SAS and JMP using potato chips and analytical chemistry.  Come and check it out!  The following agenda contains all of the presentations, and you can register for this meeting on the SAS Canada web site.  This meeting is free, and a free breakfast will be served in the morning.

 

Update: My slides from this presentation have been posted on the VanSUG web site.

 

Date: Wednesday, November 4, 2015

Place:

Ballroom West and Centre

Holiday Inn – Vancouver Centre

711 West Broadway, Vancouver, BC

V5Z 3Y2

(604) 879-0511

Agenda:

8:30am – 9:00am: Registration

9:00am – 9:20am: Introductions and SAS Update – Matt Malczewski, SAS Canada

9:20am – 9:40am: Lessons On Transposing Data, Sampling & ANOVA in SAS & JMP – Eric Cai, Cancer Surveillance & Outcomes, BC Cancer Agency

9.40am – 10.20am: Make SAS Enterprise Guide Your Own – John Ladds, Statistics Canada

10:20am – 10:30am: A Beginner’s Experience Using SAS – Kim Burrus, Cancer Surveillance & Outcomes, BC Cancer Agency

10:30am – 11:00am: Networking Break

11:00am – 11.20am: Using SAS for Simple Calculations – Jay Shurgold, Rick Hansen Institute

11:20am – 11:50am: Yes, We Can… Save SAS Formats – John Ladds, Statistics Canada

11:50am – 12:20pm: Reducing Customer Attrition with Predictive Analytics – Nate Derby, Stakana Analytics

12:20pm – 12:30pm: Evaluations, Prize Draw & Closing Remarks

If you would like to be notified of upcoming SAS User Group Meetings in Vancouver, please subscribe to the Vancouver SAS User Group Distribution List.

Applied Statistics Lesson of the Day – Additive Models vs. Interaction Models in 2-Factor Experimental Designs

In a recent “Machine Learning Lesson of the Day“, I discussed the difference between a supervised learning model in machine learning and a regression model in statistics.  In that lesson, I mentioned that a statistical regression model usually consists of a systematic component and a random component.  Today’s lesson strictly concerns the systematic component.

An additive model is a statistical regression model in which the systematic component is the arithmetic sum of the individual effects of the predictors.  Consider the simple case of an experiment with 2 factors.  If Y is the response and X_1 and X_2 are the 2 predictors, then an additive linear model for the relationship between the response and the predictors is

Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon

In other words, the effect of X_1 on Y does not depend on the value of X_2, and the effect of X_2 on Y does not depend on the value of X_1.

In contrast, an interaction model is a statistical regression model in which the systematic component is not the arithmetic sum of the individual effects of the predictors.  In other words, the effect of X_1 on Y depends on the value of X_2, or the effect of X_2 on Y depends on the value of X_1.  Thus, such a regression model would have 3 effects on the response:

  1. X_1
  2. X_2
  3. the interaction effect of X_1 and X_2

full factorial design with 2 factors uses the 2-factor ANOVA model, which is an example of an interaction model.  It assumes a linear relationship between the response and the above 3 effects.

Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon

Note that additive models and interaction models are not confined to experimental design; I have merely used experimental design to provide examples for these 2 types of models.

Applied Statistics Lesson of the Day – The Completely Randomized Design with 1 Factor

The simplest experimental design is the completely randomized design with 1 factor.  In this design, each experimental unit is randomly assigned to a factor level.  This design is most useful for a homogeneous population (one that does not have major differences between any sub-populations).  It is appealing because of its simplicity and flexibility – it can be used for a factor with any number of levels, and different treatments can have different sample sizes.  After controlling for confounding variables and choosing the appropriate range and number of levels of the factor, the different treatments are applied to the different groups, and data on the resulting responses are collected.  The means of the response variable in the different groups are compared; if there are significant differences, then there is evidence to suggest that the factor and the response have a causal relationship.  The single-factor analysis of variance (ANOVA) model is most commonly used to analyze the data in such an experiment, but it does assume that the data in each group have a normal distribution, and that all groups have equal variance.  The Kruskal-Wallis test is a non-parametric alternative to ANOVA in analyzing data from single-factor completely randomized experiments.

If the factor has 2 levels, you may think that an independent 2-sample t-test with equal variance can also be used to analyze the data.  This is true, but the square of the t-test statistic in this case is just the F-test statistic in a single-factor ANOVA with 2 groups.  Thus, the results of these 2 tests are the same.  ANOVA generalizes the independent 2-sample t-test with equal variance to more than 2 groups.

Some textbooks state that “random assignment” means random assignment of experimental units to treatments, whereas other textbooks state that it means random assignment of treatments to experimental units.  I don’t think that there is any difference between these 2 definitions, but I welcome your thoughts in the comments.