Physical Chemistry Lesson of the Day – Hess’s Law

Hess’s law states that the change in enthalpy of a multi-stage chemical reaction is just the sum of the changes of enthalpy of the individual stages.  Thus, if a chemical reaction can be written as a sum of multiple intermediate reactions, then its change in enthalpy can be easily calculated.  This is especially helpful for a reaction whose change in enthalpy is difficult to measure experimentally.

Hess’s law is a consequence of the fact that enthalpy is a state function; the path between the reactants and the products is irrelevant to the change in enthalpy – only the initial and final values matter.  Thus, if there is a path for which the intermediate values of \Delta H are easy to obtain experimentally, then their sum equal the \Delta H for the overall reaction.

 

Advertisements

Physical Chemistry Lesson of the Day – The Effect of Temperature on Changes in Internal Energy and Enthalpy

When the temperature of a system increases, the kinetic and potential energies of the atoms and molecules in the system increase.  Thus, the internal energy of the system increases, which means that the enthalpy of the system increases – this is true under constant pressure or constant volume.

Recall that the heat capacity of a system is the amount of energy that is required to raise the system’s temperature by 1 degree Kelvin.  Since the heat absorbed by the system in a thermodynamic process is the increase in enthalpy of the system, the heat capacity is just the change in enthalpy divided by the change in temperature.

C = \Delta H \div \Delta T.