## The Chi-Squared Test of Independence – An Example in Both R and SAS

#### Introduction

The chi-squared test of independence is one of the most basic and common hypothesis tests in the statistical analysis of categorical data.  Given 2 categorical random variables, $X$ and $Y$, the chi-squared test of independence determines whether or not there exists a statistical dependence between them.  Formally, it is a hypothesis test with the following null and alternative hypotheses:

$H_0: X \perp Y \ \ \ \ \ \text{vs.} \ \ \ \ \ H_a: X \not \perp Y$

If you’re not familiar with probabilistic independence and how it manifests in categorical random variables, watch my video on calculating expected counts in contingency tables using joint and marginal probabilities.  For your convenience, here is another video that gives a gentler and more practical understanding of calculating expected counts using marginal proportions and marginal totals.

Today, I will continue from those 2 videos and illustrate how the chi-squared test of independence can be implemented in both R and SAS with the same example.

## Video Tutorial – Calculating Expected Counts in Contingency Tables Using Marginal Proportions and Marginal Totals

A common task in statistics and biostatistics is performing hypothesis tests of independence between 2 categorical random variables.  The data for such tests are best organized in contingency tables, which allow expected counts to be calculated easily.  In this video tutorial in my Youtube channel, I demonstrate how to calculate expected counts using marginal proportions and marginal totals.  In a later video, I will introduce a second method for calculating expected counts using joint probabilities and marginal probabilities.

In a later tutorial, I will illustrate how to implement the chi-squared test of independence on the same data set in R and SAS – stay tuned!