Use unique() instead of levels() to find the possible values of a factor in R

*In a previous version of this blog post, I incorrectly wrote that “Species” is a character variable.  Instead, it is a factor.  I thank the readers who corrected me in the comments.

When I first encountered R, I learned to use the levels() function to find the possible values of a categorical variable.  However, I recently noticed something very strange about this function.

Consider the built-in data set “iris” and its factor “Species”.  Here are the possible values of “Species”, as shown by the levels() function.

> levels(iris$Species)

[1] "setosa" "versicolor" "virginica"

Now, let’s remove all rows containing “setosa”.  I will use the table() function to confirm that no rows contain “setosa”, and then I will apply the levels() function to “Species” again.

> iris2 = subset(iris, Species != 'setosa')
> table(iris2$Species)

    setosa versicolor virginica 
         0         50        50 


> levels(iris2$Species)

[1] "setosa" "versicolor" "virginica"

Read more of this post

Advertisements

A SAS macro to automatically label variables using another data set

Introduction

When I write SAS programs, I usually export the analytical results into an output that a client will read.  I often cannot show the original variable names in these outputs; there are 2 reasons for this:

  • The maximal length of a SAS variable’s name is 32 characters, whereas the description of the variable can be much longer.  This is the case for my current job in marketing analytics.
  • Only letters, numbers, and underscores are allowed in a SAS variable’s name.  Spaces and special characters are not allowed.  Thus, if a variable’s name is quite long and complicated to describe, then the original variable name would be not suitable for presentation or awkward to read.  It may be so abbreviated that it is devoid of practical meaning.

This is why labelling variables can be a good idea.  However, I usually label variables manually in a DATA step or within PROC SQL, which can be very slow and prone to errors.  I recently worked on a data set with 193 variables, most of which require long descriptions to understand what they mean.  Labelling them individually and manually was not a realistic method, so I sought an automated or programmatic way to do so.

Read more of this post

Getting a List of the Variable Names of a SAS Data Set

Update on 2017-04-15: I have written a new blog post that obtains the names, types, formats, lengths, and labels of variables in a SAS data set.  This uses PROC SQL instead of PROC CONTENTS.  I thank Robin for suggesting this topic in the comments and Jerry Leonard from SAS Technical Support for teaching me this method.

 

Getting a list of the variable names of a data set is a fairly common and useful task in data analysis and manipulation, but there is actually no procedure or function that will do this directly in SAS.  After some diligent searching on the Internet, I found a few tricks within PROC CONTENTS do accomplish this task.

Here is an example involving the built-in data set SASHELP.CLASS.  The ultimate goal is to create a new data set called “variable_names” that contains the variable names in one column.

The results of PROC CONTENTS can be exported into a new data set.  I will call this data set “data_info”, and it contains just 2 variables that we need – “name” and “varnum“.

Read more of this post

Getting All Duplicates of a SAS Data Set

Introduction

A common task in data manipulation is to obtain all observations that appear multiple times in a data set – in other words, to obtain the duplicates.  It turns out that there is no procedure or function that will directly provide the duplicates of a data set in SAS*.

*Update: As Fareeza Khurshed kindly commented, the NOUNIQUEKEY option in PROC SORT is available in SAS 9.3+ to directly obtain duplicates and unique observations.  I have written a new blog post to illustrate her solution.

The Wrong Way to Obtain Duplicates in SAS

You may think that PROC SORT can accomplish this task with the nodupkey and the dupout options.  However, the output data set from such a procedure does not have the first of each set of duplicates.  Here is an example.

Read more of this post

How to Find a Job in Statistics – Advice for Students and Recent Graduates

Introduction

A graduate student in statistics recently asked me for advice on how to find a job in our industry.  I’m happy to share my advice about this, and I hope that my advice can help you to find a satisfying job and develop an enjoyable career.  My perspectives would be most useful to students and recent graduates because of my similar but unique background; I graduated only 1.5 years ago from my Master’s degree in statistics at the University of Toronto, and I volunteered as a career advisor at Simon Fraser University during my Bachelor’s degree.  My advice will reflect my experience in finding a job in Toronto, but you can probably find parallels in your own city.

Most of this post focuses on soft skills that are needed to find any job; I dive specifically into advice for statisticians in the last section.  Although the soft skills are general and not specific to statisticians, many employers, veteran statisticians, and professors have told me that students and recent graduates would benefit from the focus on soft skills.  Thus, I discuss them first and leave the statistics-specific advice till the end.

Read more of this post