Organic and Inorganic Chemistry Lesson of the Day – Stereogenic Centre

A stereogenic centre (often called a stereocentre) is an atom that satisfies 2 conditions:

  1. it is bonded to at least 3 substituents.
  2. interchanging any 2 of the substituents would result in a stereoisomer.

If a molecule has only 1 stereogenic centre, then it definitely has a non-superimposable mirror image (i.e. this molecule is chiral and is an enantiomer).  However, depending on its stereochemistry, it is possible for a molecule with 2 or more stereogenic centres to be achiral; such molecules are called meso isomers (or meso compounds), and I will discuss them in a later lesson.

In organic chemistry, the stereogenic centre is usually a carbon atom that is attached to 4 substituents in a tetrahedral geometry.  In inorganic chemistry, the stereogenic centre is usually the metal centre of a coordination complex.

In organic chemistry, stereogenic centres with substituents in a tetrahedral geometry are common.  Inorganic coordination complexes can also have a tetrahedral geometry.  A stereoisomer with n tetrahedral stereogenic centres can have at most 2^n stereoisomers.  The “at most” caveat is important; as mentioned above, it is possible for a molecule with 2 or more stereogenic centres to have a spatial arrangement that results in having a superimposable mirror image; such isomers are meso isomers.   I will discuss meso isomers in more detail in a later lesson.

 

Advertisements

Inorganic Chemistry Lesson of the Day: 5-Coordinated Complexes

There are 2 common geometries for 5-coordinated complexes:

  • Square pyramid: The metal centre is coordinated to 4 ligands in a plane and a 5th ligand above the plane.
  • Trigonal bipyramid: The metal centre is coordinated to 3 ligands in a plane and 2 lignads above and below the plane.

Inorganic Chemistry Lesson of the Day: 2-Coordinated Complexes

Some coordination complexes have just 2 ligands attached to the metal centre.  These complexes have a linear geometry; this allows the greatest separation of the electron clouds in the metal-ligand bonds, which minimizes electron repulsion.