Analytical Chemistry Lesson of the Day – Linearity in Method Validation and Quality Assurance

In analytical chemistry, the quantity of interest is often estimated from a calibration line.  A technique or instrument generates the analytical response for the quantity of interest, so a calibration line is constructed from generating multiple responses from multiple standard samples of known quantities.  Linearity refers to how well a plot of the analytical response versus the quantity of interest follows a straight line.  If this relationship holds, then an analytical response can be generated from a sample containing an unknown quantity, and the calibration line can be used to estimate the unknown quantity with a confidence interval.

Note that this concept of “linear” is different from the “linear” in “linear regression” in statistics.

This is the the second blog post in a series of Chemistry Lessons of the Day on method validation in analytical chemistry.  Read the previous post on specificity, and stay tuned for future posts!

Advertisements

Analytical Chemistry Lesson of the Day – Specificity in Method Validation and Quality Assurance

In pharmaceutical chemistry, one of the requirements for method validation is specificity, the ability of an analytical method to distinguish the analyte from other chemicals in the sample.  The specificity of the method may be assessed by deliberately adding impurities into a sample containing the analyte and testing how well the method can identify the analyte.

Statistics is an important tool in analytical chemistry, and, ideally, there is no overlap in the vocabulary that is used between the 2 fields.  Unfortunately, the above definition of specificity is different from that in statistics.  In a previous Machine Learning and Applied Statistics Lesson of the Day, I introduced the concepts of sensitivity and specificity in binary classification.  In the context of assessing the predictive accuracy of a binary classifier, its specificity is the proportion of truly negative cases among the classified negative cases.