## Mathematical and Applied Statistics Lesson of the Day – The Motivation and Intuition Behind Chebyshev’s Inequality

In 2 recent Statistics Lessons of the Day, I

Chebyshev’s inequality is just a special version of Markov’s inequality; thus, their motivations and intuitions are similar.

$P[|X - \mu| \geq k \sigma] \leq 1 \div k^2$

Markov’s inequality roughly says that a random variable $X$ is most frequently observed near its expected value, $\mu$.  Remarkably, it quantifies just how often $X$ is far away from $\mu$.  Chebyshev’s inequality goes one step further and quantifies that distance between $X$ and $\mu$ in terms of the number of standard deviations away from $\mu$.  It roughly says that the probability of $X$ being $k$ standard deviations away from $\mu$ is at most $k^{-2}$.  Notice that this upper bound decreases as $k$ increases – confirming our intuition that it is highly improbable for $X$ to be far away from $\mu$.

As with Markov’s inequality, Chebyshev’s inequality applies to any random variable $X$, as long as $E(X)$ and $V(X)$ are finite.  (Markov’s inequality requires only $E(X)$ to be finite.)  This is quite a marvelous result!

## Applied Statistics Lesson of the Day – The Coefficient of Variation

In my statistics classes, I learned to use the variance or the standard deviation to measure the variability or dispersion of a data set.  However, consider the following 2 hypothetical cases:

1. the standard deviation for the incomes of households in Canada is $2,000 2. the standard deviation for the incomes of the 5 major banks in Canada is$2,000

Even though this measure of dispersion has the same value for both sets of income data, $2,000 is a significant amount for a household, whereas$2,000 is not a lot of money for one of the “Big Five” banks.  Thus, the standard deviation alone does not give a fully accurate sense of the relative variability between the 2 data sets.  One way to overcome this limitation is to take the mean of the data sets into account.

A useful statistic for measuring the variability of a data set while scaling by the mean is the sample coefficient of variation:

$\text{Sample Coefficient of Variation (} \bar{c_v} \text{)} \ = \ s \ \div \ \bar{x},$

where $s$ is the sample standard deviation and $\bar{x}$ is the sample mean.

Analogously, the coefficient of variation for a random variable is

$\text{Coefficient of Variation} \ (c_v) \ = \ \sigma \div \ \mu,$

where $\sigma$ is the random variable’s standard deviation and $\mu$ is the random variable’s expected value.

The coefficient of variation is a very useful statistic that I, unfortunately, never learned in my introductory statistics classes.  I hope that all new statistics students get to learn this alternative measure of dispersion.