Video Tutorial – Calculating Expected Counts in Contingency Tables Using Marginal Proportions and Marginal Totals

A common task in statistics and biostatistics is performing hypothesis tests of independence between 2 categorical random variables.  The data for such tests are best organized in contingency tables, which allow expected counts to be calculated easily.  In this video tutorial in my Youtube channel, I demonstrate how to calculate expected counts using marginal proportions and marginal totals.  In a later video, I will introduce a second method for calculating expected counts using joint probabilities and marginal probabilities.

In a later tutorial, I will illustrate how to implement the chi-squared test of independence on the same data set in R and SAS – stay tuned!

Video Tutorial – Rolling 2 Dice: An Intuitive Explanation of The Central Limit Theorem

According to the central limit theorem, if

  • n random variables, X_1, ..., X_n, are independent and identically distributed,
  • n is sufficiently large,

then the distribution of their sample mean, \bar{X_n}, is approximately normal, and this approximation is better as n increases.

One of the most remarkable aspects of the central limit theorem (CLT) is its validity for any parent distribution of X_1, ..., X_n.  In my new Youtube channel, you will find a video tutorial that provides an intuitive explanation of why this is true by considering a thought experiment of rolling 2 dice.  This video focuses on the intuition rather than the mathematics of the CLT.  In a later video, I will discuss the technical details of the CLT and how it applies to this example.