Video Tutorial – Calculating Expected Counts in Contingency Tables Using Marginal Proportions and Marginal Totals

A common task in statistics and biostatistics is performing hypothesis tests of independence between 2 categorical random variables.  The data for such tests are best organized in contingency tables, which allow expected counts to be calculated easily.  In this video tutorial in my Youtube channel, I demonstrate how to calculate expected counts using marginal proportions and marginal totals.  In a later video, I will introduce a second method for calculating expected counts using joint probabilities and marginal probabilities.

In a later tutorial, I will illustrate how to implement the chi-squared test of independence on the same data set in R and SAS – stay tuned!

Advertisements

Video Tutorial – Rolling 2 Dice: An Intuitive Explanation of The Central Limit Theorem

According to the central limit theorem, if

  • n random variables, X_1, ..., X_n, are independent and identically distributed,
  • n is sufficiently large,

then the distribution of their sample mean, \bar{X_n}, is approximately normal, and this approximation is better as n increases.

One of the most remarkable aspects of the central limit theorem (CLT) is its validity for any parent distribution of X_1, ..., X_n.  In my new Youtube channel, you will find a video tutorial that provides an intuitive explanation of why this is true by considering a thought experiment of rolling 2 dice.  This video focuses on the intuition rather than the mathematics of the CLT.  In a later video, I will discuss the technical details of the CLT and how it applies to this example.

 

Video Tutorial – The Hazard Function is the Probability Density Function Divided by the Survival Function

In an earlier video, I introduced the definition of the hazard function and broke it down into its mathematical components.  Recall that the definition of the hazard function for events defined on a continuous time scale is

h(t) = \lim_{\Delta t \rightarrow 0} [P(t < X \leq t + \Delta t \ | \ X > t) \ \div \ \Delta t].

Did you know that the hazard function can be expressed as the probability density function (PDF) divided by the survival function?

h(t) = f(t) \div S(t)

In my new Youtube video, I prove how this relationship can be obtained from the definition of the hazard function!  I am very excited to post this second video in my new Youtube channel.