Eric’s Enlightenment for Wednesday, June 3, 2015

  1. Jodi Beggs uses the Rule of 70 to explain why small differences in GDP growth rates have large ramifications.
  2. Rick Wicklin illustrates the importance of choosing bin widths carefully when plotting histograms.
  3. Shana Kelley et al. have developed an electrochemical sensor for detecting selected mutated nucleic acids (i.e. cancer markers in DNA!).  “The sensor comprises gold electrical leads deposited on a silicon wafer, with palladium nano-electrodes.”
  4. Rhett Allain provides a very detailed and analytical critique of Mjölnir (Thor’s hammer) – specifically, its unrealistic centre of mass.  This is an impressive exercise in physics!
  5. Congratulations to the Career Services Centre at Simon Fraser University for winning TalentEgg’s Special Award for Innovation by a Career Centre!  I was fortunate to volunteer there as a career advisor for 5 years, and it was a wonderful place to learn, grow and give back to the community. My career has benefited greatly from that experience, and it is a pleasure to continue my involvement as a guest blogger for its official blog, The Career Services Informer. Way to go, everyone!

Exploratory Data Analysis – All Blog Posts on The Chemical Statistician

This series of posts introduced various methods of exploratory data analysis, providing theoretical backgrounds and practical examples.  Fully commented and readily usable R scripts are available for all topics for you to copy and paste for your own analysis!  Most of these posts involve data visualization and plotting, and I include a lot of detail and comments on how to invoke specific plotting commands in R in these examples.

I will return to this blog post to add new links as I write more tutorials.

Useful R Functions for Exploring a Data Frame

The 5-Number Summary – Two Different Methods in R

Combining Histograms and Density Plots to Examine the Distribution of the Ozone Pollution Data from New York in R

Conceptual Foundations of Histograms – Illustrated with New York’s Ozone Pollution Data

Quantile-Quantile Plots for New York’s Ozone Pollution Data

Kernel Density Estimation and Rug Plots in R on Ozone Data in New York and Ozonopolis

2 Ways of Plotting Empirical Cumulative Distribution Functions in R

Conceptual Foundations of Empirical Cumulative Distribution Functions

Combining Box Plots and Kernel Density Plots into Violin Plots for Ozone Pollution Data

Kernel Density Estimation – Conceptual Foundations

Variations of Box Plots in R for Ozone Concentrations in New York City and Ozonopolis

Computing Descriptive Statistics in R for Data on Ozone Pollution in New York City

How to Get the Frequency Table of a Categorical Variable as a Data Frame in R

The advantages of using count() to get N-way frequency tables as data frames in R